Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于ILSO-DELM的燃氣輪機壓氣機故障預警方法

來源:電工電氣發(fā)布時間:2024-06-03 12:03瀏覽次數:328

基于ILSO-DELM的燃氣輪機壓氣機故障預警方法

馬夢甜1,茅大鈞1,蔣歡春2
(1 上海電力大學 自動化工程學院,上海 200090;
2 上海明華電力科技有限公司,上海 200090)
 
    摘 要:壓氣機結構復雜,運行特性為非線性的特點加大了燃氣輪機壓氣機故障預警的難度,為了提高燃氣輪機壓氣機故障預警能力,提出了一種基于改進的獅群優(yōu)化算法 (ILSO) 優(yōu)化深度極限學習機 (DELM) 的故障預警方法。通過皮爾遜相關分析得到與預警參數相關性高的測點,構建 ILSO-DELM 預測模型,得到正常狀態(tài)下預警參數的絕對值,通過參數估計確定閾值,根據殘差絕對值是否超過預警線來間接判斷壓氣機的運行情況。以上海某燃機電廠的運行數據進行分析,通過驗證表明:該方法能夠對壓氣機故障提前預警,并且相比于 DELM 模型預測精度更高。
    關鍵詞: 壓氣機;深度極限學習機;獅群優(yōu)化算法;故障預警
    中圖分類號:TK478     文獻標識碼:B     文章編號:1007-3175(2024)05-0063-06
 
Fault Warning Method for Gas Turbine Compressor Based on ILSO-DELM
 
MA Meng-tian1, MAO Da-jun1, JIANG Huan-chun2
(1 College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
2 Shanghai Minghua Electric Power Technology Co., Ltd, Shanghai 200090, China)
 
    Abstract: The complexity of the compressor structure and the nonlinear characteristics of its operation pose challenges in predicting faults in gas turbine compressors. To enhance the fault prediction capability of gas turbine compressor, a novel approach is proposed using an improved lion swarm optimization (ILSO) to optimize deep extreme learning machine (DELM) for fault prediction. Through Pearson correlation analysis, the measurement points with high correlation with the early warning parameters are obtained, the ILSO-DELM prediction model is constructed, the absolute value of the early warning parameters under normal conditions is obtained, the threshold is determined by parameter estimation, and the operation of the compressor is indirectly judged according to whether the absolute value of the residual exceeds the early warning line. Based on the analysis of the operation data of a gas turbine power plant in Shanghai, the verification shows that the proposed method can give early warning of compressor faults, and the prediction accuracy is higher than that of the DELM model.
    Key words: compressor; deep extreme learning machine; lion swarm optimization algorithm; fault warning
 
參考文獻
[1] 蔣洪德,任靜,李雪英,等. 重型燃氣輪機現狀與發(fā)展趨勢[J]. 中國電機工程學報,2014,34(29) :5096-5102.
[2] 李世堯,李振林,王穎,等. 部件性能退化對燃氣輪機運行狀態(tài)的影響[J]. 油氣儲運,2019,38(8) :911-918.
[3] 彭道剛,姬傳晟,涂煊,等. 基于 LSTM-SVM 的燃氣輪機壓氣機故障預警研究[J] . 動力工程學報,2021,41(5) :394-399.
[4] 黨偉. 燃氣輪機葉片斷裂故障診斷方法研究[D]. 北京:北京化工大學,2020.
[5] 陸永卿,涂雷,茅大鈞. 基于 MSET 的壓氣機故障預警研究[J]. 上海電力大學學報,2021,37(2) :133-137.
[6] ZHANG Y, GONG D, HU Y, et al.Feature selection algorithm based on bare bones particle swarm optimization[J].Neurocomputing,2015,148 :150-157.
[7] 劉宏,何鴻燊,何江. 基于獅群優(yōu)化極限學習機的數據融合算法[J]. 計算機工程與設計,2023,44(2) :321-327.
[8] 曾亮,雷舒敏,王珊珊,等. 基于 OVMD-SSA-DELM-GM 模型的超短期風電功率預測方法[J] . 電網技術,2021,45(12) :4701-4710.
[9] 顏學龍,馬潤平. 基于深度極限學習機的模擬電路故障診斷[J]. 計算機工程與科學,2019,41(11) :1911-1918.
[10] 楊化動. 積垢的形成機理及其對軸流式壓氣機性能的影響研究[D]. 北京:華北電力大學,2014.
[11] 楊天南,蔡晉. 積垢對軸流壓氣機性能的影響分析[J].航空發(fā)動機,2017,43(6) :39-43.
[12] 周浩豪,茅大鈞,李玉珍. 基于 SSAPSO-LightGBM 的火電廠引風機故障預警方法[J] . 熱能動力工程,2023,38(2) :153-160.
[13] 董淵博,茅大鈞,章明明. 基于 CNN-LSTM 的燃氣輪機 NOx 排放預測研究[J]. 熱能動力工程,2021,36(9) :132-138.
[14] DONG M, WU H Y, HU H, et al.Deformation prediction of unstable slopes based on real-time monitoring and DeepAR model[J].Sensors,2020,21(1) :14.