參考文獻(xiàn)
[1] VINAYAGAM A, OTHMAN M L, VEERASAMY V, et al.A random subspace ensemble classification model for discrimination of power quality events in solar PV microgrid power network[J].Plos One,2022,17(1) :0262570.
[2] 李固. 基于光伏發(fā)電工程的電力系統(tǒng)長期規(guī)劃模型研究[J]. 現(xiàn)代工業(yè)經(jīng)濟(jì)和信息化,2023,13(8) :192-194.
[3] 葛樂,周宇浩,袁曉冬,等. 光伏并網(wǎng)與電能質(zhì)量治理統(tǒng)一控制 [J]. 太陽能學(xué)報(bào),2017,38(9) :2426-2433.
[4] 李家俊,吳建軍,陳武,等. 基于 DWT-PCA-LIBSVM 的電能質(zhì)量擾動(dòng)分類方法[J]. 電工電氣,2023(3) :20-24.
[5] 焦晉榮. 直流配電網(wǎng)電能質(zhì)量問題分析及擾動(dòng)檢測[D].秦皇島:燕山大學(xué),2017.
[6] 武昭旭,楊岸,祝龍記. 一種新的電能質(zhì)量擾動(dòng)識別方法[J] . 重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,38(5) :49-54.
[7] 奚鑫澤,邢超,覃日升,等. 基于深度卷積去噪網(wǎng)絡(luò)的電能質(zhì)量擾動(dòng)識別方法[J] . 南方電網(wǎng)技術(shù),2022,16(12) :118-125.
[8] ZHAO Lihua, HONG Guo, WANG Zelong, et al.Research on fault vibration signal features of GIS disconnector based on EEMD and kurtosis criterion[J].IEEJ Transactions on Electrical and Electronic Engineering,2021,16(5) :677-686.
[9] YANG Lin, GUO Linming, ZHANG Wenhai, et al.Classification of multiple power quality disturbances by Tunable-Q wavelet transform with parameter selection[J].Energies,2022,15(9) :3428.
[10] DIVYALAKSHMI D, SUBRAMANIAM N P.Photovoltaic based DVR with power quality detection using wavelet transform[J].Energy Procedia,2017,117 :458-465.
[11] 王新,閆文源. 基于變分模態(tài)分解和 SVM 的滾動(dòng)軸承故障診斷[J]. 振動(dòng)與沖擊,2017,36(18) :252-256.
[12] PAN Haiyang, YANG Yu, LI Xin, et al.Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis[J].Mechanical Systems & Signal Processing,2019,114 :189-211.
[13] CHENG Jian, YANG Yu, HU Niaoqing, et al.A noise reduction method based on adaptive weighted symplectic geometry decomposition and its application in early gear fault diagnosis[J].Mechanical Systems and Signal Processing,2020,149(15) :107351.
[14] 鄭直,高崇一,宋金超,等. 基于 SGMD 敏感參數(shù)和 KFCMC 的滾動(dòng)軸承故障診斷方法[J] . 機(jī)床與液壓,2020,48(11) :189-193.
[15] 楊宇,程健,彭曉燕,等. 一種基于改進(jìn)辛幾何模態(tài)分解的復(fù)合故障診斷方法[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,47(2) :53-59.
[16] 鄭近德,應(yīng)萬明,潘海洋,等. 基于改進(jìn)全息希爾伯特譜分析的旋轉(zhuǎn)機(jī)械故障診斷方法[J] . 機(jī)械工程學(xué)報(bào),2023,59(1) :162-174.
[17] CAI J, CAI Y, CAI H, et al.Feeder Fault Warning of Distribution Network Based on XGBoost[J].Journal of Physics:Conference Series,2020,1639(1) :1-6.
[18] CHAKRABORTY D, ELZARKA H.Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold[J].Energy and Buildings,2019,185(2) :326-344.
[19] LIU Yinming, LIU Lin, YANG Liu, et al.Measuring distance using ultra-wideband radio technology enhanced by extreme gradient boosting decision tree (XGBoost)[J].Automation in Construction,2021,126(1) :103678.
[20] WANG Zucheng, PENG Yanfeng, LIU Yanfei, et al.Photovoltaic power quality analysis based on the modulation broadband mode decomposition algorithm[J].Energies,2021,14(23) :1423798.
[21] 喻貞楷,王斌,閆墉,等. 多擾動(dòng)下微電網(wǎng)故障檢測方法[J] . 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2023,35(12) :151-158.