Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁(yè) >> 發(fā)行征訂 >> 征訂方式

考慮負(fù)荷不確定性的微電網(wǎng)多時(shí)間尺度調(diào)度策略

來(lái)源:電工電氣發(fā)布時(shí)間:2024-08-30 14:30瀏覽次數(shù):291

考慮負(fù)荷不確定性的微電網(wǎng)多時(shí)間尺度調(diào)度策略

徐懂理1,徐北碩1,高瑞陽(yáng)1,錢俊杰1,王舒揚(yáng)2
(1 南京工程學(xué)院 電力工程學(xué)院,江蘇 南京 211167;
2 國(guó)網(wǎng)浙江省電力有限公司麗水供電公司,浙江 麗水 323000)
 
    摘 要:隨著分布式能源滲透率增高,微電網(wǎng)內(nèi)負(fù)荷的不確定性及能源響應(yīng)負(fù)荷波動(dòng)的時(shí)間尺度不同為系統(tǒng)靈活調(diào)度帶來(lái)了挑戰(zhàn)。電動(dòng)汽車(EV)因其快速響應(yīng)能力,合理安排其充放電行為可以有效緩解微電網(wǎng)的供電壓力,平滑負(fù)荷曲線。在以經(jīng)濟(jì)運(yùn)行最優(yōu)為目標(biāo)下,提出一種考慮負(fù)荷不確定性及電動(dòng)汽車資源的微電網(wǎng)多時(shí)間尺度調(diào)度優(yōu)化模型。在日前調(diào)度階段,結(jié)合需求響應(yīng)技術(shù)以風(fēng)光消納最優(yōu)為目標(biāo),優(yōu)化電動(dòng)汽車資源的充放電行為,確定各種資源調(diào)度安排;在實(shí)時(shí)調(diào)度階段,負(fù)荷預(yù)測(cè)出現(xiàn)偏差時(shí),將儲(chǔ)能電池、電動(dòng)汽車資源作為靈活性資源,實(shí)時(shí)滾動(dòng),對(duì)日前調(diào)度計(jì)劃做出修正。以某一微電網(wǎng)進(jìn)行仿真驗(yàn)證,結(jié)果表明所提模型能實(shí)現(xiàn)風(fēng)光全部消納,有效減少負(fù)荷曲線的峰谷差,提高其應(yīng)對(duì)負(fù)荷不確定性的能力。
    關(guān)鍵詞: 電動(dòng)汽車;微電網(wǎng);需求響應(yīng);多時(shí)間尺度;負(fù)荷不確定性
    中圖分類號(hào):TM714     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2024)08-0008-07
 
Multi-Time Scale Scheduling Strategy of Microgrid
Considering Load Uncertainty
 
XU Dong-li1, XU Bei-shuo1, GAO Rui-yang1, QIAN Jun-jie1, WANG Shu-yang2
(1 School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
2 Lishui Power Supply Company of State Grid Zhejiang Electric Power Co., Ltd, Lishui 323000, China)
 
    Abstract: As the permeability of distributed energy increases, the load uncertainty in microgrid and the different time scales of energy response load fluctuation bring challenges to the flexible scheduling of the system. Due to the rapid response ability of electric vehicle (EV),reasonable arrangement of its charge and discharge behavior can effectively alleviate the power supply pressure of microgrid and smooth the load curve. A multi-time scale scheduling optimization model of microgrid considering load uncertainty and EV resources is proposed with the aim of economic operation optimization. In the day-ahead scheduling stage, combined with the demand response technology, the charging and discharging behavior of electric vehicle resources was optimized with the goal of optimizing wind and solar consumption, and various resource scheduling arrangements were determined. In the real-time scheduling stage, when there is a deviation in the load prediction, the energy storage battery and electric vehicle resources are used as flexible resources, which are rolled in real time to make corrections to the dayahead scheduling plan. Finally, the simulation results of a microgrid show that the proposed model can realize the full absorption of wind and scenery, effectively reduce the peak-valley difference of load curve, and improve its ability to cope with load uncertainty.
    Key words: electric vehicle; microgrid; demand response; multi-time scale; load uncertainty
 
參考文獻(xiàn)
[1] RAHBARI-ASR N, ZHANG Y, CHOW M Y.Consensus-based distributed scheduling for cooperative operation of distributed energy resources and storge devices in smart grids[J].IET Generation,Transmission & Distribution,2016,10(5) :1268-1277.
[2] 夏經(jīng)德, 柴莉媛, 楊檬, 等. 市場(chǎng)環(huán)境下新能源優(yōu)化調(diào)度與高效消納的探索[J] . 智慧電力,2019,47(1) :19-25.
[3] 張志文,李華強(qiáng). 考慮靈活性的孤島微電網(wǎng)群分層能量管理策略[J] . 電力系統(tǒng)保護(hù)與控制,2020,48(20) :97-105.
[4] 徐成司,董樹(shù)鋒,張舒鵬,等. 面向工業(yè)園區(qū)的集中分布式綜合需求響應(yīng)方法[J] . 電網(wǎng)技術(shù),2021,45(2) :489-497.
[5] 蔣棹駿,向月,談竹奎,等. 計(jì)及需求響應(yīng)的高比例清潔能源園區(qū)儲(chǔ)能容量?jī)?yōu)化配置[J] . 中國(guó)電力,2023,56(12) : 147-155.
[6] 吳青峰,王毅,于少娟,等. 計(jì)及電池儲(chǔ)能單元時(shí)間約束的微電網(wǎng)儲(chǔ)荷協(xié)調(diào)控制方案[J] . 太陽(yáng)能學(xué)報(bào),2023,44(12) :453-462.
[7] 陳勃旭,崔煒,陳宇,等. 分布儲(chǔ)能直流微電網(wǎng)中多儲(chǔ)能荷電均衡控制策略[J] . 電力系統(tǒng)保護(hù)與控制,2023,51(24) :111-120.
[8] 潘軍,盧彥杉,何彬彬,等. 計(jì)及風(fēng)、光出力不確定性的微電網(wǎng)經(jīng)濟(jì)調(diào)度研究[J] . 電工電能新技術(shù),2024,43(2) :56-64.
[9] 李爭(zhēng),羅曉瑞,徐若思,等. 風(fēng)光-氫儲(chǔ)微電網(wǎng)系統(tǒng)多目標(biāo)容量?jī)?yōu)化配置[J] . 熱能動(dòng)力工程,2023,38(4) :131-138.
[10] 趙婷婷,吳剛勇,夏祥武,等. 基于共享儲(chǔ)能容量分配機(jī)制的配電網(wǎng)雙層優(yōu)化策略[J]. 水利水電技術(shù)(中英文),2023,54(7) :50-63.
[11] 趙書(shū)強(qiáng),吳楊,李志偉,等. 考慮風(fēng)光出力不確定性的電力系統(tǒng)調(diào)峰能力及經(jīng)濟(jì)性分析[J] . 電網(wǎng)技術(shù),2022,46(5) :1752-1760.
[12] 傅曉梅,溫步瀛,朱振山,等. 考慮電池儲(chǔ)能與需求響應(yīng)的微網(wǎng)多時(shí)間尺度優(yōu)化運(yùn)行[J] . 福州大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,49(3) :367-375.
[13] 向紅偉,常喜強(qiáng),呂夢(mèng)琳,等. 考慮光、儲(chǔ)、燃聯(lián)合發(fā)電的微電網(wǎng)優(yōu)化運(yùn)行[J] . 哈爾濱理工大學(xué)學(xué)報(bào),2020,25(2) :73-79.
[14] 路紅池,謝開(kāi)貴,王學(xué)斌,等. 計(jì)及多能存儲(chǔ)和綜合需求響應(yīng)的多能源系統(tǒng)可靠性評(píng)估[J]. 電力自動(dòng)化設(shè)備,2019,39(8) :72-78.
[15] LIU J B, ZHUGE C X, TANG J H, et al. A spatial agent-based joint model of electric vehicle and vehicle-to-grid adoption: A case of Beijing[J].Applied Energy, 2022,310 :118581.
[16] LIU H , NIE S L . Low carbon scheduling optimization of flexible integrated energy system considering CVaR and energy effiency[J].Sustainability,2019,11(19) :1-27.
[17] 程杉,汪業(yè)喬,廖瑋霖,等. 含電動(dòng)汽車的新能源微電網(wǎng)多目標(biāo)分層優(yōu)化調(diào)度[J] . 電力系統(tǒng)保護(hù)與控制,2022,50(12) :63-71.
[18] 潘韋如,魏哲,孫琪,等. 計(jì)及電價(jià)優(yōu)化的電動(dòng)汽車與風(fēng)電協(xié)同優(yōu)化策略[J]. 電工電氣,2023(6) :14-21.
[19] 周建力,烏云娜,董昊鑫,等. 計(jì)及電動(dòng)汽車隨機(jī)充電的風(fēng)-光-氫綜合能源系統(tǒng)優(yōu)化規(guī)劃[J]. 電力系統(tǒng)自動(dòng)化,2021,45(24) :30-40.
[20] 趙佳,孟潤(rùn)泉,魏斌,等. 計(jì)及電動(dòng)汽車用戶需求的直流微電網(wǎng)經(jīng)濟(jì)調(diào)度策略[J] . 電力建設(shè),2021,42(7) :39-47.
[21] 崔楊,張家瑞,王錚,等. 計(jì)及價(jià)格型需求響應(yīng)的風(fēng)-光-光熱聯(lián)合發(fā)電系統(tǒng)日前調(diào)度策略[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2020,40(10) :3103-3113.