Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于電力數(shù)據驅動的云控平臺邊緣計算優(yōu)化策略

來源:電工電氣發(fā)布時間:2024-11-04 13:04瀏覽次數(shù):92

基于電力數(shù)據驅動的云控平臺邊緣計算優(yōu)化策略

戴瑞海1,萬燕珍2,羅曼2,洪達2,周國華1
(1 國網浙江省電力有限公司杭州市蕭山區(qū)供電公司,浙江 杭州 311200;
2 浙江中新電力工程建設有限公司,浙江 杭州 311200)
 
    摘 要:隨著工業(yè)互聯(lián)網和智能電網的發(fā)展,電力數(shù)據量呈指數(shù)級增長。邊緣計算作為一種新型計算范式,通過將計算資源部署在靠近數(shù)據源的邊緣節(jié)點上,有效地緩解了中心服務器的壓力,提升了數(shù)據處理的實時性和可靠性。提出了一種電力數(shù)據驅動的工業(yè)云控平臺邊緣計算優(yōu)化策略,從數(shù)據預處理、邊緣節(jié)點的合理分布以及動態(tài)任務調度等進行了系統(tǒng)分析。通過實際案例驗證了所提出的邊緣計算優(yōu)化策略不僅顯著提高了系統(tǒng)的實時響應能力及計算資源的利用,而且增強了數(shù)據的安全性,為智能電網的運行和發(fā)展奠定了基礎。
    關鍵詞: 電力數(shù)據;邊緣計算;云控平臺;優(yōu)化策略;數(shù)據預處理;邊緣節(jié)點;任務調度
    中圖分類號:TM732 ;TM744     文獻標識碼:B     文章編號:1007-3175(2024)10-0037-05
 
Optimization Strategy for Edge Computing of Cloud
Control Platform Based on Power Data Driven
 
DAI Rui-hai1, WAN Yan-zhen2, LUO Man2, HONG Da2, ZHOU Guo-hua1
(1 State Grid Zhejiang Electric Power Co., Ltd. Hangzhou Xiaoshan District Power Supply Company, Hangzhou 311200, China;
2 Zhejiang Zhongxin Electric Power Engineering Construction Co., Ltd, Hangzhou 311200, China)
 
    Abstract: With the development of industrial internet and smart grid, the amount of power data is growing exponentially. Edge computing as a new computing paradigm, it effectively relieves the pressure on the central server and improves the real-time and reliability of data processing by deploying computing resources on edge nodes close to the data source. This paper proposes a edge computing optimization strategy of industrial cloud control platforms of power data driven, then systematically analyzes in terms of data preprocessing, reasonable distribution of edge nodes and dynamic task scheduling. It has been verified by practical cases that edge computing optimization strategy not only significantly improves the real-time response ability of the system and the utilization of computing resources, but also enhances the security of data, which lays a foundation for the operation and development of smart grid.
    Key words: power data; edge computing; cloud control platform; optimization strategy; data preprocessing; edge node; task scheduling
 
參考文獻
[1] 張青山,王麗婕,郝穎,等. 基于衛(wèi)星云圖和晴空模型的分布式光伏電站太陽輻照度超短期預測[J]. 高電壓技術,2022,48(8) :3271-3281.
[2] 朱濤,謝一工,張鵬,等. 分布式光伏快速發(fā)展形勢下的電網安全閾度分析[C]//電力行業(yè)信息化年會論文集,2021.
[3] 廖啟術,胡維昊,曹迪,等. 新能源電力系統(tǒng)中的分布式光伏凈負荷預測[J] . 上海交通大學學報,2021,55(12) :1520-1531.
[4] 楊歡,蔡云旖,屈子森,等. 配電網柔性開關設備關鍵技術及其發(fā)展趨勢[J] . 電力系統(tǒng)自動化,2018,42(7) :153-165.
[5] 李巖,陳夏,李巍巍,等. 基于智能軟開關與聯(lián)絡開關并聯(lián)的柔性配電網互聯(lián)結構與控制技術研究[J]. 中國電機工程學報,2022,42(13) :4749-4759.
[6] 盧毓東,謝祥穎,劉周斌,等. 基于儲能電源的配電網末端電壓改善方法[J] . 電網與清潔能源,2019,35(6) :28-33.
[7] 許傳博,趙云灝,王曉晨,等. 碳中和愿景下考慮電氫耦合的風光場站氫儲能優(yōu)化配置[J] . 電力建設,2022,43(1) :10-18.
[8] 陳景文,肖妍,莫瑞瑞,等. 考慮光伏校正的微電網儲能容量優(yōu)化配置[J] . 電力系統(tǒng)保護與控制,2021,49(10) :59-66.
[9] 丁偉,蘇新凱,廖圣瑄,等. 基于哈里斯鷹優(yōu)化算法的光伏儲能容量配置優(yōu)化[J] . 電子設計工程,2024,32(1) :96-101.
[10] 栗峰,丁杰,周才期,等. 新型電力系統(tǒng)下分布式光伏規(guī)?;⒕W運行關鍵技術探討[J] . 電網技術,2024,48(1) :184-196.
[11] 劉曉艷,王玨,姚鐵錘,等. 基于時序數(shù)據處理的分布式光伏功率預測系統(tǒng)[J] . 數(shù)據與計算發(fā)展前沿,2021,3(4) :140-148.
[12] MOREY M , GUPTA N , GARG M M , et al . A comprehensive review of grid-connected solar photovoltaic system: Architecture, control, and ancillary services[J].Renewable Energy Focus,2023,45 :307-330.