Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于多智能體深度強(qiáng)化學(xué)習(xí)的配電網(wǎng)電壓分區(qū)協(xié)同控制

來源:電工電氣發(fā)布時(shí)間:2025-03-03 10:03瀏覽次數(shù):27

基于多智能體深度強(qiáng)化學(xué)習(xí)的配電網(wǎng)電壓分區(qū)協(xié)同控制

尹昕,曹麗鵬,王玉森
(國網(wǎng)山西省電力公司長治供電公司,山西 長治 046000)
 
    摘 要:為充分利用配電網(wǎng)中多類型調(diào)節(jié)資源的調(diào)節(jié)能力,提高新能源高比例接入下配電網(wǎng)的分區(qū)自治能力,提出了一種基于多智能體深度強(qiáng)化學(xué)習(xí)(MADRL)的配電網(wǎng)電壓多分區(qū)協(xié)同控制策略。采用多智能體對配電網(wǎng)分區(qū)協(xié)同電壓控制問題進(jìn)行建模,并運(yùn)用改進(jìn)的反事實(shí)多智能體柔性動(dòng)作-評價(jià)(COMASAC)深度強(qiáng)化學(xué)習(xí)模型求解配電網(wǎng)分區(qū)協(xié)同電壓控制問題。通過實(shí)際配電網(wǎng)典型日運(yùn)行數(shù)據(jù)的仿真算例,驗(yàn)證了所提基于多智能體深度強(qiáng)化學(xué)習(xí)方法在提高配電網(wǎng)電壓穩(wěn)定性與降低網(wǎng)絡(luò)損耗方面的優(yōu)勢。
    關(guān)鍵詞: 多智能體;深度強(qiáng)化學(xué)習(xí);配電網(wǎng)電壓;分區(qū)協(xié)同控制;網(wǎng)絡(luò)損耗
    中圖分類號:TM714.2 ;TM734     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2025)02-0063-09
 
Partition Cooperative Control of Distribution Network Voltage
Based on Multi-Agent Deep Reinforcement Learning
 
YIN Xin, CAO Li-peng, WANG Yu-sen
(State Grid Shanxi Electric Power Company Changzhi Power Supply Company, Changzhi 046000, China)
 
    Abstract: In order to fully utilize the regulation capability of multiple types of regulation resources in the distribution network and improve the zonal autonomy capability of the distribution network under the high proportion of new energy access, this paper proposes a multi-zonal cooperative control strategy for distribution network voltage based on multi-agent deep reinforcement learning (MADRL). The problem of partition cooperative voltage control in distribution network is modeled using a multi-agent approach. Subsequently, an improved counterfactual multi-agent soft actor-critic (COMASAC) deep reinforcement learning model is applied to solve the zonal cooperative voltage control problem in distribution networks.Finally, simulation examples using typical day operational data from actual distribution networks demonstrate the advantages of the proposed multi-agent deep reinforcement learning method in improving voltage stability and reducing network losses in distribution networks.
    Key words: multi-agent; deep reinforcement learning; distribution network voltage; partition cooperative control; network loss
 
參考文獻(xiàn)
[1] 陳曉婷,何元明,王菁,等. 新型電力系統(tǒng)背景下配電網(wǎng)分布式光伏可接入容量研究[J] . 電工技術(shù),2023(17) :44-47.
[2] 劉玉玲,張峰,張剛,等. 考慮分布式電源的配電網(wǎng)災(zāi)中-災(zāi)后兩階段協(xié)同韌性恢復(fù)決策[J]. 電力系統(tǒng)自動(dòng)化,2024,48(2) :48-59.
[3] 閆麗梅,丁澤華. 基于譜聚類的主動(dòng)配電網(wǎng)多時(shí)間尺度無功優(yōu)化策略[J]. 浙江電力,2024,43(2) :58-68.
[4] 杜紅衛(wèi),尉同正,夏棟,等. 基于集群動(dòng)態(tài)劃分的配電網(wǎng)無功電壓自律-協(xié)同控制[J] . 電力系統(tǒng)自動(dòng)化,2024,48(10) :171-181.
[5] GAO Y, YU N.Deep Reinforcement Learning in Power Distribution Systems: Overview, Challenges, and Opportunities[C]//IEEE Power and Energy Society Innovative Smart Grid Technologies Conference,2021.
[6] 吳文傳,張伯明,孫宏斌,等. 主動(dòng)配電網(wǎng)能量管理與分布式資源集群控制[J] . 電力系統(tǒng)自動(dòng)化,2020,44(9) :111-118.
[7] 路小俊,吳在軍,李培帥,等. 面向光伏集群的配電網(wǎng)模型-數(shù)據(jù)聯(lián)合驅(qū)動(dòng)無功/電壓控制[J]. 電力系統(tǒng)自動(dòng)化,2024,48(9) :97-106.
[8] 朱鵬程,劉曌煜,孫可,等. 基于多分塊交替方向乘子法的蜂巢狀配電網(wǎng)分布式優(yōu)化調(diào)度[J] . 中國電力,2023,56(6) :90-100.
[9] 趙冬梅,王浩翔,陶然. 基于改進(jìn)交替方向乘子法的輸配電網(wǎng)分散協(xié)調(diào)魯棒優(yōu)化調(diào)度模型[J] . 電網(wǎng)技術(shù),2023,47(3) :1138-1150.
[10] 寇凌峰,吳鳴,李洋,等. 主動(dòng)配電網(wǎng)分布式有功無功優(yōu)化調(diào)控方法[J] . 中國電機(jī)工程學(xué)報(bào),2020,40(6) :1856-1864.
[11] 姜濤,張東輝,李雪,等. 含分布式光伏的主動(dòng)配電網(wǎng)電壓分布式優(yōu)化控制[J] . 電力自動(dòng)化設(shè)備, 2021,41(9) :102-109.
[12] LI Peishuai, ZHANG Cuo, WU Zaijun, et al.Distributed Adaptive Robust Voltage/VAR Control with Network Partition in Active Distribution Networks[J].IEEE Transactions on Smart Grid,2020,11(3) :2245-2256.
[13] 倪爽,崔承剛,楊寧,等. 基于深度強(qiáng)化學(xué)習(xí)的配電網(wǎng)多時(shí)間尺度在線無功優(yōu)化[J] . 電力系統(tǒng)自動(dòng)化,2021,45(10) :77-85.
[14] LIU Hangyue, ZHANG Cuo, CHAI Qingmian, et al.Robust Regional Coordination of Inverter-Based Volt/Var Control via Multi-Agent Deep Reinforcement Learning[J].IEEE Transactions on Smart Grid,2021,12(6) :5420-5433.
[15] 胡丹爾,彭勇剛,韋巍,等. 多時(shí)間尺度的配電網(wǎng)深度強(qiáng)化學(xué)習(xí)無功優(yōu)化策略[J] . 中國電機(jī)工程學(xué)報(bào),2022,42(14) :5034-5044.
[16] 張曉,吳志,鄭舒,等. 基于貝葉斯深度強(qiáng)化學(xué)習(xí)的主動(dòng)配電網(wǎng)電壓控制[J] . 電力系統(tǒng)自動(dòng)化,2024,48(20) :81-90.
[17] LI S , HU W , DI Cao , et al . A Multiagent Deep Reinforcement Learning Based Approach for the Optimization of Transformer Life Using Coordinated Electric Vehicles[J].IEEE Transactions on Industrial Iinformatics,2022,18(11) :7639-7652.
[18] CAO Di, HU Weihao, ZHAO Junbo, et al.A Multi-Agent Deep Reinforcement Learning Based Voltage Regulation Using Coordinated PV Inverters[J].IEEE Transactions on Power Systems,2020,35(5) :4120-4123.
[19] FOERSTER J, FARQUHAR G, AFOURAS T, et al.Counterfactual Multi-Agent Policy Gradients[C]//Proceeding of the AAAI Conference on Artificial Intelligence,2018.
[20] 王爾申,劉帆,宏晨,等. 基于 MASAC 的無人機(jī)集群對抗博弈方法[J] . 中國科學(xué)(信息科學(xué)),2022,52(12) :2254-2269.