Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

SSA-VMD聯(lián)合改進(jìn)小波閾值去噪算法在局部放電中應(yīng)用

來源:電工電氣發(fā)布時間:2025-04-03 12:03瀏覽次數(shù):2

SSA-VMD聯(lián)合改進(jìn)小波閾值去噪算法在局部放電中應(yīng)用

孟小斐,劉紅兵
(太原科技大學(xué) 電子信息工程學(xué)院,山西 太原 030024)
 
    摘 要:針對電力設(shè)備局部放電信號的噪聲干擾問題,提出了一種麻雀搜索算法(SSA)、變分模態(tài)分解(VMD)與改進(jìn)小波閾值去噪法相結(jié)合的去噪算法。以排列熵作為適應(yīng)度函數(shù),使用麻雀搜索算法確定變分模態(tài)分解的模態(tài)數(shù)和懲罰因子并將含噪局放信號拆分成多個固有模態(tài)分量,再根據(jù)樣本熵確定有效閾值和去噪閾值。將樣本熵大于有效閾值的模態(tài)分量視為噪聲分量剔除,將樣本熵小于有效閾值且大于去噪閾值的模態(tài)分量進(jìn)行改進(jìn)小波閾值法處理,將去噪后的模態(tài)分量和小于去噪閾值的模態(tài)重構(gòu)完成信號去噪。在 MATLAB 軟件中進(jìn)行對比仿真實(shí)驗(yàn),該算法在信噪比 xSNR 和均方根誤差 xRMSE 方面均有提升且保留了原始信號中的有效信息,驗(yàn)證了其有效性。
    關(guān)鍵詞: 信號去噪;變分模態(tài)分解;麻雀搜索算法;局部放電;改進(jìn)小波閾值法
    中圖分類號:TM744     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2025)03-0029-06
 
Application of SSA-VMD Combined Improved Wavelet Threshold
Denoising Algorithm in Partial Discharge
 
MENG Xiao-fei, LIU Hong-bing
(School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)
 
    Abstract: To solve the noise interference problem of partial discharge signal of power equipment, an algorithm combining sparrow search algorithm (SSA), variational mode decomposition (VMD) and improved wavelet threshold denoising method is proposed. Firstly, with permutation entropy as fitness function, the sparrow search algorithm is used to determine the mode number and penalty factor of variational mode decomposition, and the signal with noise is divided into multiple inherent modal components. Consider modal components having a sample entropy higher than the effective threshold as noise components and eliminate them. For modal components where the sample entropy is lower than the effective threshold yet higher than the denoising threshold, carry out the treatment with the improved wavelet threshold approach. Subsequently,reconstruct the modal components that have been denoised and those with sample entropy below the denoising threshold, thus achieving signal denoising. In the MATLAB based comparative simulation experiments, the algorithm proposed in this paper demonstrates improvements in both the signal - to - noise ratio xSNR and root - mean - square error xRMSE. Moreover, it effectively preserves the valid information within the original signal, thus verifying its effectiveness.
    Key words: signal denoising; variational mode decomposition; sparrow search algorithm; partial discharge; improved wavelet threshold method
 
參考文獻(xiàn)
[1] 張鎮(zhèn)濤,劉明萍,余勃文,等. 改進(jìn)小波閾值新算法在電網(wǎng)擾動中的去噪研究[J] . 現(xiàn)代電子技術(shù),2021,44(9) :53-57.
[2] 劉暢. 電力信號去噪與微弱信號檢測的研究[D]. 武漢:華中科技大學(xué),2019.
[3] ZHONG Liangliang, WANG Hanfeng, XU Wei, et al.The application of power quality signal denoising based on the improved wavelet threshold function[J].IOP Conference Series :Materials Science and Engineering,2020,768(6) :062021.
[4] 趙坤,鄭小霞. 基于改進(jìn) EMD 和小波閾值法的風(fēng)機(jī)數(shù)據(jù)降噪研究[J] . 上海電力大學(xué)學(xué)報,2020,36(2) :136-140.
[5] 張明龍,張振宇,高源,等. 基于變分模態(tài)分解的暫態(tài)擾動波形去噪算法[J] . 電力系統(tǒng)保護(hù)與控制,2022,50(8) :43-49.
[6] YUAN C, DING X, CHENG H, et al.Research on Denoising of GIS Ultra-High Frequency Partial Discharge Signal Based on VMD Combined with SG Filter[C]//Journal of Physics :ConferenceSeries,2023.
[7] WANG F, GAO G.Optimization of Short-Term Wind Power Prediction of Multi-Kernel Extreme Learning Machine Based on Sparrow Search Algorithm[C]//Journal of Physics :Conference Series,2023,2527(1) :012075.
[8] 胡銳,喬加飛,李永華,等. 基于 WOA-VMD-SSA-LSTM 的中長期風(fēng)電預(yù)測[J] . 太陽能學(xué)報,2024,45(9) :549-556.
[9] 劉沖, 馬立修, 潘金鳳, 等. 聯(lián)合 VMD 與改進(jìn)小波閾值的局放信號去噪[J] . 現(xiàn)代電子技術(shù),2021,44(21) :45-50.
[10] 顧云青,蘇玉香,沈曉群,等. 基于改進(jìn)的 CEEMDAN 排列熵和 GWO-SVM 的滾動軸承故障診斷[J]. 組合機(jī)床與自動化加工技術(shù),2022(8) :62-66.
[11] 袁耀,黃克捷,陳建興,等. 基于 WSO-VMD 樣本熵和 SSA-SVM 算法的有載分接開關(guān)故障診斷方法研究[J]. 西南大學(xué)學(xué)報(自然科學(xué)版),2024,46(11) :203-216.