Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

新能源不確定功率預測方法綜述

來源:電工電氣發(fā)布時間:2018-09-14 09:14 瀏覽次數(shù):792
新能源不確定功率預測方法綜述
 
吳晨媛,呂干云,吳啟宇,蔣小偉
(南京工程學院 電力工程學院,江蘇 南京 211167)
 
    摘 要:新能源的不確定性功率預測研究能在傳統(tǒng)預測模型基礎上提高其預測精度并提供一定的概率信息和預測區(qū)間。從誤差概率密度預測、區(qū)間預測兩個方面對新能源功率預測的不確定性進行分析,總結歸納了各種不同的模型及其優(yōu)缺點和評價指標,并探討了新能源不確定功率預測存在的問題及今后需要深入研究的方向。
    關鍵詞:新能源功率預測;不確定性;誤差概率密度預測;區(qū)間預測
    中圖分類號:TM715     文獻標識碼:A     文章編號:1007-3175(2018)09-0001-06
 
Survey of Uncertainty Power Prediction Technique in New Energy
 
WU Chen-yuan, LV Gan-yun, WU Qi-yu, JIANG Xiao-wei
(School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 2111 67, China)
 
    Abstract: Uncertainty power prediction for the new energy prediction study, based on the traditional prediction model, could improve its prediction accuracy and provide a certain probability information and prediction interval. This paper analyzed the uncertainty of new energy power prediction, from the aspects of error probability density prediction and interval prediction, and summarized various models and their advantages, disadvantages and evaluation indexes. Finally, this paper discussed the problem of uncertainty prediction for the new energy power and directions for further research in the future.
    Key words: new energy power prediction; uncertainty; error probability density prediction; interval prediction
 
參考文獻
[1] 楊茂,劉紅柳,季本明. 基于混沌理論的風電功率超短期多步預測的誤差分析[J]. 電力系統(tǒng)保護與控制,2017,45(4):50-55.
[2] CARRASCO J M,F(xiàn)RANQUELO L G, BIALASIEWICZ J T, et al.Power-electronic systems for the grid integration of renewable energy sources:a survey[J]. IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
[3] 丁明,王偉勝,王秀麗,等. 大規(guī)模光伏發(fā)電對電力系統(tǒng)影響綜述[J]. 中國電機工程學報,2014,34(1):2-14.
[4] SIDERATOS G, HATZIARGYRIOU N D. An Advanced Statistical Method for Wind Power Forecasting[J]. IEEE Transactions on Power System,2007,22(1):258-265.
[5] 張曉丹. 風電功率預測誤差不確定性建模研究[D]. 北京:北京交通大學,2016.
[6] ZIADI Zakaria, OSHIRO Masato, SENJYU Tomonobu, et al. Optimal Voltage Control Using Inverters Interfaced with PV Systems Considering Forecast Error in a Distribution System[J]. IEEE Transactions on Sustainable Energy,2014,5(2):682-690.
[7] TEWARI S, GEYER C J, MOHAN N. A statistical model for wind power forecast error and its application to the estimation of penalties in liberalized markets[J]. IEEE Transactions on Power System,2011,26(4):2031-2039.
[8] 劉立陽, 吳軍基, 孟紹良. 短期風電功率預測誤差分布研究[J]. 電力系統(tǒng)保護與控制,2013,41(12):65-70.
[9] LI Y Q, HE W, YAN X B. Default probability of listed companies based on the generalized error distribution[C]//Proceedings of the 2010 International Conference on Multimedia Technology,2010:1-4.
[10] 楊宏,苑津莎,張鐵峰. 一種基于Beta分布的風電功率預測誤差最小概率區(qū)間的模型和算法[J]. 中國電機工程學報,2015,35(9):2135-2142.
[11] 劉芳,潘毅,劉輝,等. 風電功率預測誤差分段指數(shù)分布模型[J]. 電力系統(tǒng)自動化,2013,37(18):14-19.
[12] 劉燕華,李偉花,劉沖,等. 短期風電功率預測誤差的混合偏態(tài)分布模型[J]. 中國電機工程學報,2015,35(10):2375-2382.
[13] 葉林,任成,趙永寧,饒日晟,滕景竹. 超短期風電功率預測誤差數(shù)值特性分層分析方法[J]. 中國電機工程學報,2016,36(3):692-700.
[14] 楊茂,董駿城. 基于混合高斯分布的風電功率實時預測誤差分析[J]. 太陽能學報,2016,37(6):1594-1602.
[15] 王成福,王昭卿,孫宏斌,等. 考慮預測誤差時序分布特性的含風電機組組合模型[J]. 中國電機工程學報,2016,36(15):4081-4090.
[16] EPSNECNIKOV V A. Nonparametric estimation of a multidimensional probability density[J]. Theory of Probability & Its Applications,1969,14(1):156-161.
[17] JEON J, TAYLOR J W. Using conditional kernel density estimation for wind power density forecasting[J]. Journal of the American Statistical Association,2012,107(497):66-79.
[18] 姜曉亮,李巍,呂項羽,等. 基于非參數(shù)核密度估計法的光儲系統(tǒng)容量優(yōu)化配置[J]. 高電壓技術,2015,41(7):2225-2230.
[19] MATTHIAS Lange, DETLEV Heinemann. Relating the uncertainty of short-term wind speed predictions to meteorological situations with methods from synoptic climatology[C]//European Wind Energy Conference & Exhibition EWEC,2003.
[20] HAGAN K E, OYEBANJO O O, MASAUD T M, et al. A probabilistic forecasting model for accurate estimation of PV solar and windpower generation[C]//IEEE Power and Energy Conference at Illinois,2016.
[21] 王錚,王偉勝,劉純,等. 基于風過程方法的風電功率預測結果不確定性估計[J]. 電網技術,2013,37(1):242-247.
[22] 趙唯嘉,張寧,康重慶,等. 光伏發(fā)電出力的條件預測誤差概率分布估計方法[J]. 電力系統(tǒng)自動化,2015,39(16):8-15.
[23] 周松林,茆美琴,蘇建徽. 風電功率短期預測及非參數(shù)區(qū)間估計[J]. 中國電機工程學報,2011,31(25):10-16.
[24] 劉興杰,謝春雨. 基于貝塔分布的風電功率波動區(qū)間估計[J]. 電力自動化設備,2014,34(12):26-30.
[25] 盛驟,謝式千,潘承毅. 概率論與數(shù)理統(tǒng)計[M]. 北京:高等教育出版社,2008:270-278.
[26] 王勃,劉純,張俊,等. 基于Monte-Carlo方法的風電功率預測不確定性估計[J]. 高電壓技術,2015,41(10):3385-3391.
[27] 陳建寶,丁軍軍. 分位數(shù)回歸技術綜述[J]. 統(tǒng)計與信息論壇,2008(3):89-96.
[28] 李智,韓學山,楊明,等. 基于分位點回歸的風電功率波動區(qū)間分析[J]. 電力系統(tǒng)自動化,2011,35(3):83-87.
[29] WAN Can, LIN Jin, SONG Yonghua, XU Zhao, YANG Guangya. Probabilistic Forecasting of Photovoltaic Generation:An Efficient Statistical Approach[J]. IEEE Transactions on Power System,2017,32(3):2471-2472.
[30] ANTONIO Bracale,GUIDO Carpinelli,PASQUALE De Falco. A Probabilistic Competitive Ensemble Method for Short-Term Photovoltaic Power Forecasting[J]. IEEE Transactions on Sustainable Energy,2017,8(2):551-560.
[31] 楊錫運,關文淵,劉玉奇,肖運啟. 基于粒子群優(yōu)化的核極限學習機模型的風電功率區(qū)間預測方法[J]. 中國電機工程學報,2015,35(S1):146-153.
[32] 閻潔,劉永前,張浩,等. 基于風場景識別的動態(tài)風電功率概率預測方法[J]. 現(xiàn)代電力,2016,33(2):51-58.
[33] 韓爽, 劉永前, 楊勇平, 等. 風電場超短期功率預測及不確定性分析[J]. 太陽能學報,2011,32(8):1251-1256.
[34] 周同旭,周松林. 光伏發(fā)電功率區(qū)間概率預測[J]. 銅陵學院學報,2017,16(2):108-110.
[35] 董雷,周文萍,張沛,等. 基于動態(tài)貝葉斯網絡的光伏發(fā)電短期概率預測[J]. 中國電機工程學報,2013,33(S1):38-45.
[36] 徐曼,喬穎,魯宗相. 短期風電功率預測誤差綜合評價方法[J]. 電力系統(tǒng)自動化,2011,35(12):20-26.
[37] 孟巖峰,胡書舉,鄧雅,等. 風電功率預測誤差分析及預測誤差評價方法[J]. 電力建設,2013,34(7):6-9.
[38] 吳問足,喬穎,魯宗相,等. 風電功率概率預測方法及展望[J]. 電力系統(tǒng)自動化,2017,41(18):167-175.
[39] 葉瑞麗,劉建楠,苗峰顯,等. 風電場風電功率預測誤差分析及置信區(qū)間估計研究[J]. 陜西電力,2017,45(2):21-25.
[40] 林優(yōu),楊明,韓學山,等. 基于條件分類與證據(jù)理論的短期風電功率非參數(shù)概率預測方法[J]. 電網技術,2016,40(4):1113-1119.