Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 往年索引

基于配電站室智能巡檢新技術(shù)的研究和實(shí)踐

來源:電工電氣發(fā)布時(shí)間:2019-03-22 12:22 瀏覽次數(shù):832
基于配電站室智能巡檢新技術(shù)的研究和實(shí)踐
 
呂培強(qiáng)1,朱小明1,陳會(huì)1,楊啟明1,宋國(guó)亮2
(1 國(guó)網(wǎng)蘇州供電分公司,江蘇 蘇州 215008;2 蘇州安賽電力科技有限公司,江蘇 蘇州 215021)
 
    摘 要:針對(duì)配電站室傳統(tǒng)人工巡視所存在的現(xiàn)場(chǎng)問題,提出優(yōu)化定位算法,拓展連續(xù)定位的可行性,并結(jié)合自助式糾偏新方法,保障配電站室智能巡檢軌跡控制的可靠性與便利性。通過可視化輔助診斷新方案,融合生產(chǎn)業(yè)務(wù),驗(yàn)證捕獲信息的完整性與可信性,適應(yīng)配電站室多視角、多樣性觀測(cè)信息的新需求,為配電智能巡檢新技術(shù)發(fā)展提供了示范應(yīng)用。
    關(guān)鍵詞:配電站室;智能巡視;智能識(shí)別;試點(diǎn)應(yīng)用
    中圖分類號(hào):TM641     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2019)03-0017-06
 
Research and Practice Based on New Technology of Intelligent Inspection in Distribution Station
 
LYU Pei-qiang1, ZHU Xiao-ming1, CHEN Hui1, YANG Qi-ming1, SONG Guo-liang2
(1 State Grid Suzhou Power Supply Company, Suzhou 215008, China;2 Suzhou Easun Electric Power Technology Co., Ltd, Suzhou 215021, China)
 
    Abstract: Aiming at the site problem existing in the traditional manual inspection of power distribution station, this paper proposed the algorithm of optimized positioning to expand the feasibility of continuous positioning and combined with the new self-service rectifying method to guarantee the reliability and convenience of intelligent inspection trajectory control in distribution station. Through the new scheme of visual auxiliary diagnosis, the product service was mixed together to verify the integrity and credibility of captured information, adaptable to the new requirements of multi-perspective and diversity observation information, which provides the referential demonstration and application for the technology development of distribution intelligent inspection.
    Key words: distribution station; intelligent patrol; intelligent recognition; pilot application
 
參考文獻(xiàn)
[1] OLSON C F.Probabilistic self-localization for mobile robots[J].IEEE Transactions on Robotics and Automation,2000,16(1):55-66.
[2] FOX D, BURGARD W, THRUN S.Markov Localization for Mobile Robots in Dynamic Environments[J]. Journal of Artificial Intelligence Research,1999(11):391-427.
[3] FOX D, THRUN S, DELLAERT F, et al.Particle Filters for Mobile Robot Localization[M].New York: Springer-Verlag,2001.
[4] LEONARD J, DURRANT-WHYTE H.Mobile robot localization by tracking geometric beacons[J].IEEE Transactions Robotics and Automation,1991,7(3):376-382.
[5] HABIB D, JAMAL H, KHAN S A.Employing multiple unmanned aerial vehicles for cooperative path planning[J].International Journal of Advanced Robotic Systems,2013,10(5):235.
[6] DIGANI V, SABATTINI L, SECCHI C, et al. Towards decentralized coordination of multi robot systems in industrial environments: a hierarchical traffic control strategy[C]//IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP),2013:209-215.
[7] HUANG Shihshinh, CHEN Chungjen, HSIAO Peiyung, et al.On-board vision system for lane recognition and front-vehicle detection to enhance driver’s awareness[C]//IEEE International Conference on Robotics & Automation.New Orleans, LA, USA,2004:2456-2461.
[8] SCHMIDT R, WEISSER H, SCHULENBERG P, et al. Autonomous driving on vehicle test tracks: over view, implementation and results[C]//Proceedings of the IEEE Intelligent Vehicles Symposium.Dearborn,2000:152-155.
[9] HASHIMOTO K, KIMOTO T, EBINE T, et al. Manipulator control with image-based visual servo[C]//Proceedings of IEEE International Conference on Robotics and Automation. Sacramento,1991:2267-2271.
[10] CORKE P I, HUTCHINSON S A.A new partitioned approach to image base dvisual servo control[J].IEEE Transactions on Robotics and Automation,2001,17(4):507-515.
[11] KRAGIC D, MILLER A T, Allen P K.Real-time tracking meets online grasp planning[C]//Proceedings of IEEE International Conference on Robotics and Automation. Seoul, South Korea,2001:2460-2065.
[12] MIURA K, GANGLOFF J, DE MATHELIN M, et al. Visual servoing without Jacobian using modified simplex optimization[C]//SICE 2004 Annual Conference,2004:2453-2458.
[13] SMITH C E, PAPAANIKOLOPOULOS N P.Grasping of static and moving objects using a visionbased control approach[J].Intelligent and Robotic Systems,1997,19(3):237-270.
[14] 江柳青,尚偉偉. 基丁線性耦合振蕩器模型的仿人機(jī)器人步態(tài)規(guī)劃算法[J]. 中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào),2014,44(10):795-803.
[15] AMRITA Sneha A, ABIRAMI E, ANKITA A, et al. Agricultural robot for automatic ploughing and seeding[C]//2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR),2015:17-23.
[16] KOMASILOVS V, STALIDZANS E, OSADCUKS V, et al. Specification development of robotic system for pesticide spraying in greenhouse[C]//2013 IEEE 14th International Symposium on Computational Intelligence and Informatics(CINTI), Budapest, Hungary,2013:453-457.
[17] CONESA-MU OZ J, VALENTE J, CERRO J D, et al. Integrating autonomous aerial scouting with autonomous ground actuation to reduce chemical pollution on crop soil[C]//Second Iberian Robotics Conference (ROBOT 2015), Springer International Publishing,2015:41-53.
[18] BENGOCHEA-GUEVARA J M, CONESA-MU OZ J, JAR D, et al.Merge fuzzy visual servoing and GPSbased planning to obtain a proper navigation behavior for a Small Crop-Inspection Robot[J].Sensors(Basel),2016,16(3):276.
[19] CASSINI R, TAMPALINI F, BARTOLINI P, et al. Docking and Charging System for Autonomous Mobile Robots[J].Massachusetts Institute of Technology,2005,18(4):513-524.
[20] YUTA S, HADA Y.Long term activity of the autonomous robot-proposal of a bench-mark problem for the autonomy[C]//1998 IEEE/RSJ International Conference on Intelligent Robots and Systems.Victoria, BC, Canada,1998:1871-1878.
[21] SANTOS J M, PORTUGAL D, RUI P R.An evaluation of 2D SLAM techniques available in robot operating system[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics(SSRR).Linkoping, Sweden,2013:1-6.
[22] MARSHALL J A, BROUCKE M E, FRANCIS B A. Formations of vehicles in cyclic pursuit[J].IEEE Transactions on Automatic Control,2004,49(11):1963-1974.
[23] REN W.Collective motion from consensus with cartesian coordinate coupling[J].IEEE Transactions on Automatic Control,2009,54(6):1330-1335.
[24] CHEN Z, ZHANG H T.No-beacon collective circular motion of jointly connected multiagents[J].Automatica (Journal of IFAC),2011,47(9):1929-1937.