基于壓電效應(yīng)的磁場(chǎng)能量采集管理電路研究
趙帥,周科峰,劉琛,王晗
(國(guó)網(wǎng)江蘇省電力有限公司南京供電分公司,江蘇 南京 210019)
摘 要:對(duì)基于壓電效應(yīng)的磁場(chǎng)能量采集管理電路進(jìn)行了研究,介紹了不同能量管理電路的結(jié)構(gòu)和工作原理。通過MATLAB對(duì)各能量管理電路在壓電材料處于恒定外力下的輸出功率特性進(jìn)行了仿真分析,并制作了懸臂梁結(jié)構(gòu)電磁能量采集裝置和能量管理電路,測(cè)試了各能量管理電路在恒定幅值工頻磁場(chǎng)下的輸出功率特性,結(jié)果表明,在2.4 Oe工頻磁場(chǎng)下串聯(lián)同步開關(guān)電感電路使輸出功率提高了13.14%。使用該裝置在20 A載流導(dǎo)線附近成功采集磁場(chǎng)能量并點(diǎn)亮LED燈。
關(guān)鍵詞:磁場(chǎng)能量采集;能量管理電路;壓電效應(yīng);恒定磁場(chǎng)
中圖分類號(hào):TM154 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1007-3175(2020)02-0012-06
Research on Magnetic Energy Harvesting Management Circuit Based on Piezoelectric Effect
ZHAO Shuai, ZHOU Ke-feng, LIU Chen, WANG Han
(Nanjing Power Supply Company, State Grid Jiangsu Electric Power Co., Ltd, Nanjing 210019, China)
Abstract: This paper studied on several magnetic energy harvesting circuits based on piezoelectric effect. Introduction was made to the structure and working principle of different energy management circuits. The output power characteristics of each energy management circuit were carried out simulation by MATLAB when the piezoelectric material was subjected to the force of constant amplitude. A magnetic energy harvesting device of cantilever beam structure and several circuits were designed to measure the output power characteristics of various energy management circuits under the power frequency magnetic field of constant amplitude. The results show that the output power can be increased by 13.14% under 2.4 Oe power frequency magnetic field by using the S-SSHI circuit. Magnetic field energy can be successfully collected near 20 A current-carrying conductor with this device.
Key words: magnetic energy harvesting; energy management circuit; piezoelectric effect; steady magnetic field
參考文獻(xiàn)
[1] 周江. 電力物聯(lián)網(wǎng)關(guān)鍵技術(shù)初探[J]. 通信電源技術(shù),2019,36(6):228-229.
[2] 傅質(zhì)馨,李瀟逸,袁越. 泛在電力物聯(lián)網(wǎng)關(guān)鍵技術(shù)探討[J]. 電力建設(shè),2019,40(5):1-12.
[3] 張亞健,楊挺,孟廣雨. 泛在電力物聯(lián)網(wǎng)在智能配電系統(tǒng)應(yīng)用綜述及展望[J]. 電力建設(shè),2019,40(6):1-12.
[4] HAN J, HU J, YANG Y, et al.A Nonintrusive Power Supply Design for Self-Powered Sensor Networks in the Smart Grid by Scavenging Energy from AC Power Line[J].IEEE Transactions on Industrial Electronics,2015,62(7):4398-4407.
[5] DONALDSON E F, GIBSON J R, JONES G R, et al. Hybrid optical current transformer with optical and power-line energ isation[J]. IET Proceedings-Generation Transmission and Distrbution,2000,147(5):304-309.
[6] 杜小振,張龍波,于紅,等. 自供能傳感器能量采集技術(shù)的研究現(xiàn)狀[J]. 微納電子技術(shù),2018,55(4):265-275.
[7] 曹淑瑛,王雪源,鄭加駒,等. 電磁式振動(dòng)能量采集電路關(guān)鍵技術(shù)研究進(jìn)展[J]. 磁性材料及器件,2018,49(2):56-61.
[8] GREVE H, WOLTERMANN E, QUENZER H J, et al. Giant magnetoelectric coefficients in ( Fe90C o10)78S i12B10- AlN thin film composites[J].Applied Physics Letters,2010,96(18):182501.
[9] 夏樺康. 壓電—電磁復(fù)合振動(dòng)能量采集及其電能提取技術(shù)研究[D]. 南京:南京航空航天大學(xué),2017.
[10] 孫皓文. 基于壓電效應(yīng)的振動(dòng)能量采集電路研究[D]. 石河子:石河子大學(xué),2017.
[11] 劉超. 振動(dòng)微能量收集管理系統(tǒng)的研究[D]. 成都:電子科技大學(xué),2014.
[12] CHEN Y Y, VASIC D, COSTA F, et al.A selfpowered switching circuit for piezoelectric energy harvesting with velocity control[J]. The European Physical Journal Applied Physics,2012,57(3):30903.
[13] LEFEUVRE E, BADEL A, RICHARD C, et al.A comparison between several vibration-powered piezoelectric generators for standalone systems[J].Sensors and Actuators A: Physical,2006,126(2):405-416.
[14] LIANG J, LIAO W.An Improved Self-Powered Switching Interface for Piezoelectric Energy Harvesting[C]//International Conference on Information and Automation,2009.
[15] LALLART M, INMAN D J, GUYOMAR D.Transient performance of energy harvesting strategies under constant force magnitude excitation[J]. Journal of Intelligent Material Systems and Structures,2010,21(13):1279-1291.