Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

粒子群與細菌覓食混合算法在光伏陣列MPPT中的應(yīng)用

來源:電工電氣發(fā)布時間:2021-06-28 10:28 瀏覽次數(shù):627
粒子群與細菌覓食混合算法在光伏陣列MPPT中的應(yīng)用
 
支昊,張建德,黃陳蓉,薛正愛
(南京工程學院 電力工程學院,江蘇 南京 211167)
 
     摘 要 :為了提高光伏陣列光電轉(zhuǎn)換效率,確保光伏陣列功率輸出始終維持在最大功率點上,傳統(tǒng)最大功率點跟蹤算法在應(yīng)用于局部陰影條件時,可能存在陷入局部最優(yōu)或跟蹤時間過長等問題。提出一種粒子群與細菌覓食混合算法,并將其應(yīng)用于光伏陣列的最大功率點跟蹤中,來改善跟蹤過程中的收斂精度與速度。通過仿真實驗結(jié)果,與傳統(tǒng)擾動觀察算法以及細菌覓食算法進行對比,驗證了混合算法在跟蹤速度、收斂精度、穩(wěn)定性上的優(yōu)越性,以及在動態(tài)光照條件下的適應(yīng)性能力。
    關(guān)鍵詞 :最大功率點跟蹤 ;粒子群算法 ;細菌覓食算法 ;光伏陣列
    中圖分類號 :TM615     文獻標識碼 :A     文章編號 :1007-3175(2021)06-0014-06
 
Application of Hybrid Algorithm of Particle Swarm Optimization and
Bacterial Foraging in MPPT of Photovoltaic System
 
ZHI Hao, ZHANG Jian-de, HUANG Chen-rong, XUE Zheng-ai
(School of Electrical Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
 
    Abstract: In order to improve the photoelectric conversion efficiency of the photovoltaic array and ensure the power output of the photovoltaic array is always maintained at the maximum power point, when the traditional maximum power point tracking algorithm is applied to partial shadow conditions, there may be problems such as falling into the local optimum or longer tracking time. The hybrid algorithm of particle swarm optimization and bacterial foraging is proposed and applied to the maximum power point tracking of photovoltaic array to improve the convergence accuracy and speed in the tracking process. Compared with traditional disturbance observation algorithm and bacterial foraging algorithm, it is verified that this hybrid algorithm is better in tracking speed, convergence accuracy, stability and adaptability under dynamic lighting conditions.
    Key words: maximum power point tracking; particle swarm optimization algorithm; bacterial foraging optimization algorithm; photovoltaic array
 
參考文獻
[1] 國家能源局 . 太陽能發(fā)展“十三五”規(guī)劃 [J] . 太陽能,2016(12) :5-14.
[2] 潘文峰,陸晨,王加鴻,謝英豪,裘幼梓 . 晶體硅光伏組件的熱斑效應(yīng)詳解 [J] . 太陽能,2019(1) :48-52.
[3] 業(yè)睿 . 光伏熱斑效應(yīng)及光伏陣列輸出特性的仿真分析 [J]. 電子測試,2014(4) :35-38.
[4] 邱革非,張春剛,仲澤坤,楊曉龍,字楊 . 基于擾動觀察法和電導(dǎo)增量法的光伏發(fā)電系統(tǒng) MPPT 算法研究綜述 [J]. 中國電力,2017,50(3) :154-160.
[5] 趙帥旗,肖輝,劉忠兵,朱梓嘉,張萬 . 基于 BSO 的局部陰影下光伏最大功率點追蹤 [J] . 電力系統(tǒng)及其自動化學報,2020,32(6) :74-79.
[6] 翟小軍,杜蘅,劉建義,馬大中,張晨光 . 粒子群算法與電導(dǎo)增量法的雙級最大功率點跟蹤控制 [J].紅外與激光工程,2016,45(6) :190-195.
[7] 馬運亮,高梅峰,周超超 . 基于粒子群算法的光伏 MPPT 控制策略研究 [J] . 制造業(yè)自動化,2015,37(13) :52-54.
[8] 聶曉華,賴家俊 . 復(fù)雜應(yīng)用環(huán)境下粒子群光伏 MPPT 控制方法 [J] . 電力電子技術(shù),2016,50(1) :37-40.
[9] 吳登盛,王立地,劉通,孟曉芳 . 基于神經(jīng)網(wǎng)絡(luò)的光伏陣列多峰 MPPT 的研究 [J] . 電測與儀表,2019,56(7) :69-74.
[10]李帥,畢大強,任先文 . 基于 BP 神經(jīng)網(wǎng)絡(luò)的復(fù)雜光照條件下光伏列陣 MPPT 控制研究 [J]. 電氣開關(guān),2016,54(6) :66-71.
[11]陳年,王宏華,韓偉 . 基于 GA-BP 神經(jīng)網(wǎng)絡(luò)的光伏陣列 MPPT 研究 [J] . 電測與儀表,2014,51(2) :40-44.
[12]孫航,肖海偉,李曉輝,李星,杜海江 . 光伏電池模型綜述 [J]. 電源技術(shù),2016,40(3) :743-745.
[13]楊元培,楊奕,王建山,張桂紅 . 光伏發(fā)電系統(tǒng)電池最大功率跟蹤控制仿真 [J] . 計算機仿真,2018,35(6) :116-121.
[14]戚軍,張曉峰,張有兵,周文委 . 考慮陰影影響的光伏陣列仿真算法研究 [J]. 中國電機工程學報,2012,32(32) :131-138.
[15]KENNEDY J , EBERHART R . Particle Swarm Optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks,1995.
[16]WU Xinghua.A density adjustment based particle swarm optimization learning algorithm for neural network design[C]//2011 International Conference on Electrical and Control Engineering (ICECE),2011.
[17]HU Xinxin, WANG Lijin, ZHONG Yiwen.An improved particle swarm optimization algorithm for site index curve model[C]//International Conference on Business Management and Electronic Information (BMEI),2011.
[18]SASITHRADEVI A, SINGH N.Synergy of Adaptive Bacterial Foraging Algorithm and Particle Swarm Optimization Algorithm for Image Segmentation[C]//International Conference on Circuit,Power and Computing Technologies,2015.
[19]商立群,朱偉偉 . 基于全局學習自適應(yīng)細菌覓食算法的光伏系統(tǒng)全局最大功率點跟蹤方法 [J] . 電工技術(shù)學報,2019,34(12) :2606-2614.
[20]王立舒,蔣賽加,王君,丁曉成 . 基于混合策略的光伏 MPPT 算法優(yōu)化控制 [J] . 太陽能學報,2016,37(6) :1396-1402.