Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于MFCC和CNN的變壓器聲學特征提取及故障識別

來源:電工電氣發(fā)布時間:2023-06-30 12:30 瀏覽次數(shù):385

基于MFCC和CNN的變壓器聲學特征提取及故障識別

宋誠1,夏翔1,王鑫一2,楊文星2,姚平2
(1 國網(wǎng)湖北省電力有限公司孝感供電公司,湖北 孝感 432000;
2 長江大學 物理與光電工程學院,湖北 荊州 434023)
 
    摘 要:在變壓器故障診斷中,為解決使用傳統(tǒng)分類器方法存在的泛化能力弱、識別率不高等問題,提出了一種基于梅爾頻率倒譜系數(shù) (MFCC) 和卷積神經(jīng)網(wǎng)絡 (CNN) 的變壓器聲學特征提取及故障識別方法。利用數(shù)字麥克風采集變壓器在不同工作狀態(tài)下的聲音信號,經(jīng)預處理后計算其 MFCC 特征作為靜態(tài)特征,并進一步處理得到 ΔMFCC 特征以及 ΔΔMFCC 特征作為動態(tài)特征;引入卷積神經(jīng)網(wǎng)絡模型作為分類器,分別使用靜態(tài)特征與三者的融合特征作為數(shù)據(jù)集進行了訓練;對兩個模型的訓練結果進行了分析,并在其他配電室對系統(tǒng)進行了驗證實驗。實驗結果表明,該方法能夠有效地根據(jù)變壓器工作聲音識別變壓器的正常工作狀態(tài)、過載狀態(tài)以及放電故障,且動態(tài)特征的引入能夠在一定程度上提高模型的識別效果。
    關鍵詞: 變壓器;聲音信號;故障診斷;梅爾頻率倒譜系數(shù);卷積神經(jīng)網(wǎng)絡;動態(tài)特征
    中圖分類號:TM407     文獻標識碼:A     文章編號:1007-3175(2023)06-0049-06
 
Transformer Acoustic Feature Extraction and Fault
Identification Based on MFCC and CNN
 
SONG Cheng1, XIA Xiang1, WANG Xin-yi2, YANG Wen-xing2, YAO Ping2
(1 State Grid Hubei Electric Power Co., Ltd. Xiaogan Power Supply Company, Xiaogan 432000, China;
2 School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China)
 
    Abstract: The traditional classifier method has problems of weak generalization ability and low recognition rate when diagnosing transformer faults, so the paper proposes a transformer acoustic feature extraction and fault identification method based on Mel Frequency Cepstral Coefficient(MFCC)and Convolutional Neural Networks(CNN). First, acoustic signals of transformers in different operating states are collected by digital microphones, and after the preprocess their MFCC features are calculated as static features and then further processed to obtain ΔMFCC features as well as ΔΔMFCC features as dynamic features. Second, the convolutional neural network model is introduced as the classifier, and static features and the fused features of the three are used respectively as the data set for training. Third, training results of the two models are analyzed, and the system is validated with experiments in other distribution rooms. The experimental results show that this method can effectively identify the normal working state, the overload state and the discharge fault of transformers based on their working sound. Besides, the introduction of dynamic features can increase the identification of the model to a certain extent.
    Key words: transformer; acoustic signals; fault diagnosis; Mel frequency cepstral coefficient; convolutional neural network; dynamic feature
 
參考文獻
[1] 李剛,于長海,劉云鵬,等. 電力變壓器故障預測與健康管理:挑戰(zhàn)與展望[J] . 電力系統(tǒng)自動化,2017,41(23):156-167.
[2] 翟永杰,楊旭,彭雅妮,等. 基于計算機聽覺技術的電力設備狀態(tài)監(jiān)測研究綜述[J] . 廣東電力,2019,32(9):24-32.
[3] MA Xin, LUO Yu, SHI Jian, et al.Acoustic Emission Based Fault Detection of Substation Power Transformer[J].Applied Sciences,2022,12(5):2759.
[4] 耿琪深,王豐華,金霄. 基于 Gammatone 濾波器倒譜系數(shù)與鯨魚算法優(yōu)化隨機森林的干式變壓器機械故障聲音診斷[J] . 電力自動化設備,2020,40(8):191-196.
[5] 林凡勤,李明明,郭紅. 變壓器故障診斷技術綜述[J]. 計算機與現(xiàn)代化,2022(3):116-126.
[6] 張兆坤, 楊國華, 張佳豪, 等. 基于 VNWOA-LSSVM 變壓器故障診斷方法研究[J] . 電工電氣,2022(12):32-36.
[7] 朱超,張兆君,譚風雷,等. 基于聲音的變壓器故障識別[J]. 電工技術,2021(12):82-85.
[8] 翟永杰,彭雅妮,楊旭,等. 融合 MFCC 和 IMFCC 特征的電廠設備聲音識別算法[J] . 現(xiàn)代電子技術,2022,45(8):6-12.
[9] 王趙國,韋存海,彭雅妮,等. 基于 GFCC-SVM-RFE 的電力設備聲音特征提取方法[J] . 電力信息與通信技術,2022,20(9):34-42.
[10] 鞏泉役,彭克,陳羽,等. 基于電弧隨機性和卷積網(wǎng)絡的交流串聯(lián)電弧故障識別方法[J] . 電力系統(tǒng)自動化,2022,46(24):162-169.
[11] 楊毫鴿. 飛機發(fā)動機異常聲音識別方法研究[D] .南昌:南昌航空大學,2018.
[12] 肖毓增,付新華,楊勝儀,等. 聲紋識別在電廠設備狀態(tài)監(jiān)測中的運用[J] . 物聯(lián)網(wǎng)技術,2022,12(10):4-7.
[13] 張瑤,羅林根,王輝,等. 基于 MPSO-MLE 的變電站設備異常聲源定位方法[J] . 高電壓技術,2020,46(9):3145-3153.
[14] 吳國鑫,詹花茂,李敏. 聲紋的變壓器放電與機械故障診斷研究[J] . 應用聲學,2021,40(4):602-610.
[15] 王讓定,柴佩琪. 語音倒譜特征的研究[J] . 計算機工程,2003,29(13):31-33.
[16] HE Kaiming, ZHANG Xiangyu, REN Shaoqing,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,2016.
[17] 孟子超,杜文娟,王海風. 基于遷移學習深度卷積神經(jīng)網(wǎng)絡的配電網(wǎng)故障區(qū)域定位[J] . 南方電網(wǎng)技術,2019,13(7) :25-33.