參考文獻(xiàn)
[1] 段瑞玲,李慶祥,李玉和. 圖像邊緣檢測方法研究綜述[J]. 光學(xué)技術(shù),2005,31(3) :415-419.
[2] 陳凱,朱鈺. 機(jī)器學(xué)習(xí)及其相關(guān)算法綜述[J]. 統(tǒng)計(jì)與信息論壇,2007,22(5) :105-112.
[3] 張慧,王坤峰,王飛躍. 深度學(xué)習(xí)在目標(biāo)視覺檢測中的應(yīng)用進(jìn)展與展望[J] . 自動(dòng)化學(xué)報(bào),2017,43(8) :1289-1305.
[4] REN Shaoqing, HE Kaiming, GIRSHICK R, et al.Faster r-cnn:Towards real-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,28 :91-99
[5] RANI S, GHAI D, KUMAR S.Object detection and recognition using contour based edge detection and fast R-CNN [J].Multimedia Tools and Applications,2022,81(29) :847-871.
[6] HU Bing, WANG Jianhui.Detection of PCB surface defects with improved faster-RCNN and feature pyramid network [J].IEEE Access,2020,8:108335-108345.
[7] JIANG Peiyuan, ERGU D, LIU Fangyao, et al.A Review of Yolo Algorithm Developments[J].Procedia Computer Science,2022,199 :1066-1073.
[8] ROGELIO J, DADIOS E, BANDALA A, et al. Alignment control using visual servoing and mobilenet single-shot multi-box detection (SSD) : A review[J].International Journal of Advances in Intelligent Informatics,2022,8(1) :97-114.
[9] 曹義親,伍銘林,徐露. 基于改進(jìn) YOLOv5 算法的鋼材表面缺陷檢測[J]. 圖學(xué)學(xué)報(bào),2023,44(2) :335-345.
[10] LI Yiting, HUANG Haisong, XIE Qingsheng, et al.Research on a surface defect detection algorithm based on MobileNet-SSD[J].Applied Sciences,2018,8(9) :1-17.
[11] CHEN Jiasi, RAN Xukan.Deep learning with edge computing:A review[J].Proceedings of the IEEE,2019,107(8) :1655-1674.
[12] WANG X, HAN Y, LEUNG V C M, et al.Convergence of edge computing and deep learning : A comprehensive survey[J].IEEE Communications Surveys & Tutorials,2020,22(2) :869-904.
[13] LU Xiaocong, JI Jian, XING Zhiqi, et al.Attention and feature fusion SSD for remote sensing object detection[J].IEEE Transactions on Instrumentation and Measurement,2021,70 :1-9.
[14] ABDAR M, POURPANAH F, HUSSAIN S, et al.A review of uncertainty quantification in deep learning:Techniques,applications and challenges[J].Information Fusion,2021,76 :243-297.