參考文獻(xiàn)
[1] 郭偉,唐人虎.2060 碳中和目標(biāo)下的電力行業(yè)[J] .能源,2020(11) :19-26.
[2] 黃晶.中國(guó) 2060 年實(shí)現(xiàn)碳中和目標(biāo)亟需強(qiáng)化科技支撐[J].可持續(xù)發(fā)展經(jīng)濟(jì)導(dǎo)刊,2020(10) :15-16.
[3] 張平祥,閆果,馮建情,等. 強(qiáng)電用超導(dǎo)材料的發(fā)展現(xiàn)狀與展望[J]. 中國(guó)工程科學(xué),2023,25(1) :60-67.
[4] 嚴(yán)陸光,周孝信,甘子釗,等. 關(guān)于發(fā)展高溫超導(dǎo)輸電的建議[J]. 電工文摘,2015(1) :1-8.
[5] 肖立業(yè),林良真. 超導(dǎo)輸電技術(shù)發(fā)展現(xiàn)狀與趨勢(shì)[J] .電工技術(shù)學(xué)報(bào),2015,30(7) :1-9.
[6] 朱紅亮,曹雨軍,夏芳敏,等. 高溫超導(dǎo)電纜制冷系統(tǒng)設(shè)計(jì)控制方案及試驗(yàn)驗(yàn)證[J] . 真空與低溫,2021,27(6) :543-548.
[7] 李繼春,張立永,曹雨軍,等. 冷絕緣高溫超導(dǎo)電纜循環(huán)冷卻系統(tǒng)設(shè)計(jì)及運(yùn)行分析[J] . 低溫與超導(dǎo),2020,48(2) :7-11.
[8] 楊天慧,信贏,李文鑫. 滿足電力與能源液體雙重輸送管道建設(shè)的超導(dǎo)材料需求和發(fā)展現(xiàn)狀[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2022,42(z1) :215-225.
[9] ISHIGOHKA T.A feasibility study on a world-wide-scale superconducting power transmission system [J].IEEE Transactions on Applied Superconductivity: A Publication of the IEEE Superconductivity Committee,1995,5(2) :949-952.
[10] GRANT P M.The supercable: Dual delivery of chemical and electric power[J].IEEE Transactions on Appiled Superconductivity,2005,15(2) :1810-1813.
[11] TREVISANI L, FABBRI M, NEGRINI F.Long-term scenarios for energy and environment: Energy from the desert with very large solar plants using liquid hydrogen and superconducting technologies[J].Fuel Processing Technology,2006,87(2) :157-161.
[12] TREVISANI L, FABBRI M, NEGRINI F.Long distance renewable-energy-sources power transmission using hydrogen-cooled MgB2 superconducting line[J].Cryogenics,2007,47(2) :113-120.
[13] YAMADA S, HISHINUMA Y, UEDE T, et al.Study on 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics:Conference Series,2008,97(1) :012167.
[14] YAMADA S, HISHINUMA Y, UEDE T, et al.Conceptual design of 1 GW class hybrid energy transfer line of hydrogen and electricity[J].Journal of Physics: Conference Series,2010,234(3) :032064.
[15] 黃晟,翟雨佳,黃守道,等. 一種海上離網(wǎng)型超導(dǎo)風(fēng)電制備液氫的方法及裝置:C N202210428868.6[P] .2023-07-19.
[16] NAKAYAMA T, YAGAI T, TSUDA M, et al.Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen[J].IEEE Transactions on Applied Superconductivity,2009,19(3) :2062-2065.
[17] VYSOTSKY V S, NOSOVA A, TETISOVS S, et al.Hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable—First experimental proof of concept[J].IEEE Transactions on Applied Superconductivity,2013,23(3) :5400906.
[18] VYSOTSKY V S, BLAGOV E V, KOSTYUK V V, et al.New 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable: Development and test results[J].IEEE Transactions on Applied Superconductivity,2015,25(3) :5400205.
[19] KOSTYUK V V, BLAGOV E V, ANTYUKHOV I V, et al.Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable[J].Cryogenics,2015,66 :34-42.
[20] 李振明,崔亞林,劉偉,等. 液氫溫區(qū)超導(dǎo)電纜本體設(shè)計(jì)與短樣試驗(yàn)[J]. 低溫與超導(dǎo),2018,46(1) :54-58.
[21] TAITO M,YASUYUKI S,MASAHIRO S, et al.Experiment and Simulation for Normal Zone Propagation of Multifilament MgB2 Superconducting Wire Cooled by Liquid Hydrogen[J].IEEE Transactions on Applied Superconductivity,2019,29(5) :1-6.
[22] 金建勛. 高溫超導(dǎo)電纜與輸電[M]. 北京:科學(xué)出版社,2021.
[23] 崔亞林. 液氫環(huán)境下超導(dǎo)電纜結(jié)構(gòu)設(shè)計(jì)與性能分析研究[D]. 北京:北京交通大學(xué),2017.
[24] 陳卓正,李華強(qiáng),鐘力生. 聚丙烯層壓紙絕緣電纜發(fā)展現(xiàn)狀[J]. 絕緣材料,2022,55(11) :1-9.
[25] 趙瑞彬. 高臨界電流超導(dǎo)磁體結(jié)構(gòu)優(yōu)化與安全運(yùn)行分析[D]. 成都:四川師范大學(xué),2022.