Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

可控?fù)Q相換流器電阻-散熱器電熱耦合仿真分析

來源:電工電氣發(fā)布時(shí)間:2025-03-03 14:03 瀏覽次數(shù):34

可控?fù)Q相換流器電阻-散熱器電熱耦合仿真分析

閆全全1,李雨珺2,冷超1,薛楚亮1,朱正一1,江飛1,劉亞坤2
(1 國網(wǎng)上海市電力公司超高壓分公司,上海 200240;
2 上海交通大學(xué) 電氣工程系,上海 200240)
 
    摘 要:可控?fù)Q相換流器(CLCC)是一種有望解決多饋入直流系統(tǒng)連續(xù)閉鎖問題的新型電力電子裝置,其關(guān)鍵組件電阻-散熱器的性能影響溫度分布和器件的長期穩(wěn)定。針對(duì) CLCC 電阻-散熱器,利用 COMSOL 軟件建立了三維電熱場(chǎng)耦合計(jì)算模型,并基于有限元方法對(duì)不同幅值恒壓電勢(shì)和正弦電勢(shì)輸入條件下的溫度分布規(guī)律和散熱效果展開了分析。結(jié)果表明,短時(shí)沖擊下,CLCC 電阻-散熱器的溫升集中在電阻區(qū)域,溫升幅值與所承受電壓幅值成二次指數(shù)相關(guān)關(guān)系;正弦波形輸入下電阻-散熱器結(jié)構(gòu)的溫升幅度為恒壓輸入情況下的60% ;散熱器充分將熱量傳導(dǎo)并散熱至常溫需要時(shí)間為500 s。
    關(guān)鍵詞: 可控?fù)Q相換流器;電阻- 散熱器;電熱耦合;溫度分布
    中圖分類號(hào):TM46     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2025)02-0019-05
 
Simulation Analysis of Electrothermal Coupling for Resistor-Heatsink of
Controllable Line Commutated Converter
 
YAN Quan-quan1, LI Yu-jun2, LENG Chao1, XUE Chu-liang1, ZHU Zheng-yi1, JIANG Fei1, LIU Ya-kun2
(1 State Grid Shanghai Electric Power Company Ultra-High Voltage Branch, Shanghai 200240, China;
2 Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
 
    Abstract: The controllable line commutated converter (CLCC) is a novel power electronic device with the potential to address the issue of continuous blocking in multi-fed direct current (DC) systems. The performance of its key component, the resistor-heatsink, influences the temperature distribution and long-term stability of the device. For the CLCC resistor-heatsink, a three-dimensional coupled electric-thermal field computational model was established using COMSOL software, and the temperature distribution law and heat dissipation effect under the input conditions of different amplitude constant voltage potential and sinusoidal potential were analyzed based on the finite element method.The results indicate that under short-term impact, the temperature rise of the CLCC resistor-heatsink is concentrated in the resistive area,and the magnitude of the temperature rise exhibits a quadratic exponential correlation with the magnitude of the voltage applied. Under sinusoidal waveform input, the magnitude of the temperature rise in the resistor-heatsink structure is 60% of that observed under constant voltage input. Furthermore, it takes 500 s for the heatsink to fully conduct the heat and dissipate it to ambient temperature.
    Key words: controllable line commutated converter; resistor-heatsink; electrothermal coupling; temperature distribution
 
參考文獻(xiàn)
[1] 梁旭明,張平,常勇. 高壓直流輸電技術(shù)現(xiàn)狀及發(fā)展前景[J]. 電網(wǎng)技術(shù),2012,36(4) :1-9.
[2] 文俊,殷威揚(yáng),溫家良,等. 高壓直流輸電系統(tǒng)換流器技術(shù)綜述[J]. 南方電網(wǎng)技術(shù),2015,9(2) :16-24.
[3] XU C, YU Z, ZHAO B, et al.A novel hybrid line commutated converter based on IGCT to mitigate commutation failure for high-power HVdc application[J].IEEE Transactions on Power Electronics,2021,37(5) :4931-4936.
[4] MANKOUR M, SAMI B S.Mitigation of commutation failure method in LCC converter based on HVDC systems by mean of modeling and simulation[J].Journal of Ambient Intelligence and Humanized Computing,2023,14(5) :5837-5852.
[5] MIRSAEIDI S, DONG X.An enhanced strategy to inhibit commutation failure in line-commutated converters[J].IEEE Transactions on Industrial Electronics,2019,67(1) :340-349.
[6] 高沖,賀之淵,楊俊,等. 新型可控電網(wǎng)換相換流器拓?fù)浼捌淇刂品椒╗J] . 中國電機(jī)工程學(xué)報(bào),2023,43(5) :1940-1949.
[7] YANG J, SHENG C, GAO C, et al.Novel Controllable Commutated Converter(CLCC) and Rapid Defense Method for Commutation Failure[C]//Frontier Academic Forum of Electrical Engineering :Springer Nature Singapore,2022 :47-56.
[8] YIN C, XU Y, YANG J, et al.The hybrid simulation step modelling approach for the CLCC based HVDC transmission system[C]//12th International Conference on Renewable Power Generation(RPG 2023),2023 :1276-1281.
[9] 冷超. 新型可控?fù)Q相換流閥安裝要點(diǎn)分析[J]. 電力與能源,2023,44(5) :514-518.
[10] 王亞東,張新燕,王騰,等. 考慮溫度影響的混合型 SiC IGBT 變參數(shù)暫態(tài)電熱耦合模型建立與分析[J] .高電壓技術(shù),2023,49(5) :2038-2046.
[11] 賈英杰,肖飛,羅毅飛,等. 基于場(chǎng)路耦合的大功率 IGBT 多速率電熱聯(lián)合仿真方法[J] . 電工技術(shù)學(xué)報(bào),2020,35(9) :1952-1961.
[12] 姚芳,王少杰,李志剛. 逆變器中 IGBT 功率模塊的電熱聯(lián)合仿真模型[J]. 半導(dǎo)體技術(shù),2016,41(6) :440-445.
[13] 侯婷,茍浪中,李巖,等. 壓接型 IGBT 在 MMC 系統(tǒng)中的電熱耦合仿真[J]. 南方電網(wǎng)技術(shù),2020,14(5) :28-36.
[14] 帥雙旭,熊煒,彭月,等. 基于電熱耦合模型和壽命預(yù)測(cè)的 IGBT 可靠性評(píng)估[J]. 電力科學(xué)與工程,2021,37(6) :17-25.
[15] 董偉杰,孟曉麗,宋曉輝,等. IGBT 散熱器設(shè)計(jì)與仿真[J]. 系統(tǒng)仿真學(xué)報(bào),2016,28(9) :2095-2100.
[16] 趙波,文玲鋒,喬爾敏,等. 基于 PSpice 的晶閘管電熱模型研究[J]. 電力電子技術(shù),2009,43(12) :84-86.
[17] 鄺凡,柳竺江,嚴(yán)俊韜,等. 基于有限元方法的大功率電力晶閘管電熱分析[J]. 電力系統(tǒng)裝備,2019(5) :74-75.
[18] 劉隆晨,李龍蛟,彭東,等. 基于共軛梯度法的晶閘管電熱耦合模型快速求解方法研究[J] . 電源學(xué)報(bào),2024,22(3) :54-61.