龍門加工中心綜合誤差建模與實時補償
廖嘉琦1,倪俊芳1,宋世通2
(1 蘇州大學 機電工程學院,江蘇 蘇州 215137;
2 紐威數(shù)控裝備(蘇州)有限公司,江蘇 蘇州 215004)
摘 要:加工中心的熱變形誤差是衡量其加工精度的關鍵指標之一。為有效降低熱變形對機床加工精度的影響,基于熱誤差敏感度理論,優(yōu)化了誤差采樣的溫度測點布置,并結合綜合誤差建模理論,利用 MATLAB 軟件構建了加工中心的綜合誤差模型。通過機床外部 I/O 面板、傳感器和數(shù)控系統(tǒng),搭建了誤差實時補償系統(tǒng),并對龍門加工中心進行了實時補償分析。實驗結果表明,在常溫條件下,最大定位誤差從 162.6μm 降至 46.3μm,降幅達 72% ;在熱平衡狀態(tài)下,最大定位誤差從 71.7μm 降至 23.6μm,降幅達 67%。該方法通過實時補償機床誤差,顯著提升了加工精度。
關鍵詞: 綜合誤差建模;誤差實時補償;數(shù)控系統(tǒng);龍門加工中心
中圖分類號:TG659 文獻標識碼:B 文章編號:1007-3175(2025)03-0060-04
Comprehensive Error Modeling and Real-Time Compensation of
Gantry Machining Centers
LIAO Jia-qi1, NI Jun-fang1, SONG Shi-tong2
(1 School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China;
2 Neway CNC Equipment (Suzhou) Co., Ltd, Suzhou 215004, China)
Abstract: The thermal deformation error of machining centers is one of the key indicators for measuring its machining accuracy. In order to effectively reduce the impact of thermal deformation on the precision of machine tools, based on thermal error sensitivity theor, this study optimizes the temperature measurement point layout for error sampling, combines a comprehensive error model, and uses MATLAB software to construct the synthetic error model of machining center. Through the external I/O panel, sensor and CNC system, a real-time error compensation system is established and the real-time compensation analysis of gantry machining center is carried out. Experimental results show that under normal temperature conditions, the maximum positioning error is reduced from 162.6 μm to 46.3 μm, a reduction of 72%;under thermal equilibrium conditions, the maximum positioning error is reduced from 71.7 μm to 23.6 μm, a reduction of 67%. This method significantly improves machining accuracy by real-time compensation of machine tool errors.
Key words: comprehensive error modeling; real-time error compensation; CNC system; gantry machining center
參考文獻
[1] LI R , ZHAO L , ZHOU B , et al . Research on Machining Error Control Method Driven by Digital-Twin Model of Dynamic Characteristics of Machining System[J].Integrated Ferroelectrics,2023,237(1) :321-335.
[2] 王夢磊,牛興華,朱傳達,等. 基于球頭刀銑削的三軸數(shù)控機床幾何與切削力綜合誤差補償研究[J]. 制造技術與機床,2024(7) :71-79.
[3] 邱立偉. 多軸數(shù)控機床綜合誤差建模與補償?shù)难芯縖D].長春:長春工業(yè)大學,2011.
[4] BOHEZ E L J.Compensating for Systematic Errors in 5-axis NC Machining[J].Computer-Aided Design,2002,34(5) :391-403.
[5] 王維,楊建國,姚曉棟,等. 數(shù)控機床幾何誤差與熱誤差綜合建模及其實時補償[J] . 機械工程學報,2012,48(7) :165-170.
[6] 楊少兵,陳忠維. 數(shù)控機床進給軸位置精度的測量與優(yōu)化[J]. 機電技術,2020(4) :40-43.