Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于引入禁忌表的改進(jìn)粒子群算法的多目標(biāo)無功優(yōu)化研究

來源:電工電氣發(fā)布時間:2017-05-24 13:24 瀏覽次數(shù):6
基于引入禁忌表的改進(jìn)粒子群算法的多目標(biāo)無功優(yōu)化研究
 
姚亞鵬1,劉崇新1,徐文文2
(1 西安交通大學(xué) 電氣工程學(xué)院,陜西 西安 710049;2 陜西省地方電力設(shè)計有限公司,陜西 西安 710065)
 
    摘 要:針對無功優(yōu)化面臨的實際問題,建立了融合有功網(wǎng)損、節(jié)點電壓偏移和無功補(bǔ)償成本的多目標(biāo)優(yōu)化模型。在傳統(tǒng)粒子群算法(PSO) 的基礎(chǔ)上,動態(tài)調(diào)節(jié)慣性權(quán)重并引入禁忌搜索算法(TS) 的禁忌表,設(shè)置靈活存儲結(jié)構(gòu)和禁忌準(zhǔn)則,保證有效搜索多樣化,彌補(bǔ)了全局尋優(yōu)能力不足、易陷入局部最優(yōu)的缺點。IEEE14 節(jié)點系統(tǒng)的仿真結(jié)果表明提出的方法具有較好的全局尋優(yōu)能力和搜索性能。
    關(guān)鍵詞:無功優(yōu)化;粒子群算法;禁忌表;多目標(biāo)優(yōu)化
    中圖分類號:TM714.3     文獻(xiàn)標(biāo)識碼:A      文章編號:1007-3175(2017)05-0005-05
 
Probe into Multi-Objective Reactive Power Optimization Based on Modified Particle Swarm Algorithm with Taboo List
 
YAO Ya-peng1, LIU Chong-xin1, XU Wen-wen2
(1 School of Electrical Engineering, Xi’an Jiaotong University, Xi'an 710049, China;
2 Shanxi Regional Electric Power Design Co., Ltd, Xi'an 710065, China)
 
    Abstract: According to the practical issue of reactive power optimization, this paper established a multi-objective optimization model mixed together with the active power transmission losses, the node voltage deviation and the reactive compensation cost. Based on the traditional particle swarm algorithm, the inertia weight was adaptively adjusted according to the fitness and the taboo list of taboo search algorithm was introduced to set up the flexible storage structure and taboo criterion, so as to ensure the searching effectively, which makes up for the deficiency of the global optimization performance and the defect of falling into local optimum. The simulation result of IEEE14 node system shows that the method mentioned above has better global optimization capacity and searching performance.
    Key words: reactive power optimization; particle swarm algorithm; taboo list; multi-objective optimization
 
參考文獻(xiàn)
[1] 黨存祿,張寧,邵沖. 電力系統(tǒng)無功優(yōu)化研究綜述[J]. 電網(wǎng)與清潔能源,2014,30(1):8-14.
[2] DAI C, CHEN W, ZH U Y, ZHANG X. Seeker optimization algorithm for optimal reactive power dispatch[J].IEEE Transactions on Power Systems,2009,24(3):1218-1231.
[3] 楊胡萍,李威仁,左士偉,等. 基于改進(jìn)遺傳算法的電力系統(tǒng)無功優(yōu)化[J]. 鄭州大學(xué)學(xué)報( 工學(xué)版),2015,36(6):66-68.
[4] 孫蕾,魏宇存,劉崇新,等. 引入改進(jìn)tent映射的遺傳禁忌混合算法及其在地區(qū)無功優(yōu)化中的應(yīng)用[J]. 陜西電力,2012,40(11):1-7.
[5] 鄧長虹,馬慶,肖永,等. 基于自學(xué)習(xí)遷移粒子群算法及高斯罰函數(shù)的無功優(yōu)化方法[J]. 電網(wǎng)技術(shù),2014,38(12):3341-3346.
[6] 陳前宇,陳維榮,戴朝華,等. 基于改進(jìn)PSO算法的電力系統(tǒng)無功優(yōu)化[J]. 電力系統(tǒng)及其自動化學(xué)報,2014,26(2):8-13.
[7] 劉述奎,陳維榮,李奇,等. 基于隨機(jī)聚焦粒子群算法的電力系統(tǒng)無功優(yōu)化[J]. 電網(wǎng)技術(shù),2008,32(S2):8-11.
[8] 吳肖鋒,仲偉坤,范華君. 基于禁忌搜索- 免疫粒子群算法的無功優(yōu)化[J]. 黑龍江電力,2013,35(3):211-214.
[9] 魏宇存, 賀曉, 周建, 等. 基于混沌粒子群算法的多目標(biāo)無功優(yōu)化研究[J]. 陜西電力,2013,41(9):10-15.
[10] STEPHEN D S, SOMASUNDARAM P.Solution for Multi-Objective Reactive Power Optimization Using Fuzzy Guided Tabu Search[J].Arabian Journal for Science and Engineering,2012,37(8):2231-2241.
[11] 劉楊,田學(xué)鋒,詹志輝. 粒子群優(yōu)化算法慣量權(quán)重控制方法的研究[J]. 南京大學(xué)學(xué)報( 自然科學(xué)版),2011,47(4):364-371.
[12] 葛少云,劉自發(fā),余貽鑫. 基于改進(jìn)禁忌搜索的配電網(wǎng)重構(gòu)[J]. 電網(wǎng)技術(shù),2004,28(23):22-26.